Title: The Environmental Impact Study of the Biscay Marine Energy Platform (bimep) project.

Presenting author, co-authors, affiliations, E-mail for the author:

Juan Bald1, Andrea del Campo1, Javier Franco1, Ibon Galparso1, Manuel González1, Carlos Hernández1, Pedro Liria1, Iratxe Menchaca1, Iñigo Muxika1, Oihana Solaun1, Ainhize Uriarte1, Yago Torre Enciso2, Dorleta Marina2.

1AZTI. Marine Research Division. Herrera kaia portualdea z/g. 20110 Pasaia (Gipuzkoa), Spain.

2Ente Vasco de la Energía (EVE). Alameda de Urquijo, 36 - 1º. Edificio Plaza Bizkaia. 48011 Bilbao (Bizkaia), Spain.

*Corresponding author: jbald@azti.es

Abstract for Poster presentation

The Biscay Marine Energy Platform (bimep) is an offshore infrastructure for the demonstration and testing of wave energy harnessing devices promoted by the Basque Entity of Energy (Ente Vasco de la Energía - EVE). Bimep is located close to Arminza town (Basque Country, Northern Spain) and it consists on an 5.3 km² sea area between 50 and 90 m depths where four static submarine cables will be placed, operating at 13kV and 5MW. According to the Royal Decree 1/2008 of Environmental Impact Assessment (EIA), the bimep project falls into the 4.c category of projects of Annex II of this Decree. Such classification involves that the competent authority for environmental issues, that is, the General Directory for Quality and Environmental Evaluation of the Spanish Ministry of Environment, Rural and Marine Environment, has to decide whether or not the project needs to undergo the complete procedure of an EIA. On the first of June 2009, the General Council on Environmental Quality Assessment of the Ministry of Rural, Marine and Natural Environment of the Spanish Government, on the light of the Environmental Impact Study (EIS) of the bimep project undertaken by AZTI in 2008, decided not to submit the project to the whole Environmental Impact Assessment (EIA) process. The EIS considered that the main actions associated with the project that could cause impacts were related to the installation process and the physical presence of structures (i.e. submarine cables, moorings and WECs), which could generate conflicts between different users of the area, as well as underwater noise, electromagnetic fields, reduction of marine energy, etc. The present contribution explains the main findings of the EIS: (i) description of the project; (ii) environmental characteristics of bimep area; (iii) expected impacts; (iv) mitigation measures and (iii) environmental monitoring plan.
The Environmental Impact Study of the Biscay Marine Energy Platform (bimep) project

1. INTRODUCTION

1. According to the Basque Country’s Energy Strategy, wave energy is one of the forms of marine energy for which a significant production is expected in the medium term. The particular geographical characteristics of the Basque Country provide suitable conditions for the production of such energy.

2. In this context, the Basque Energy Agency (Ente Vasco de la Energía) launched in 2008 the initiative to build the bimep (Biscay Marine Energy Project).

3. In 2008, according to Article 36 of Royal Decree 520/2008 of the EIA, the Promoter (EVE) initiated the administrative procedure in order to achieve the environmental approval of the project.

4. For this purpose, in 2008, AZTI developed the Environmental Impact Study (EIS) of the BIMEP project.

2. THE BIMEP PROJECT

Promoted by the Basque Entity of Energy (EVE), BIMEP represents an offshore test site for the demonstration and proving of wave energy converters (WEC).

- It consists of 8 km2 sea area between 50 and 90 m depths.
- Four static submarine cables will be installed, operating at 13 kV and 5 MW.
- Wave energy generation devices will be connected to these cables through dynamic submarine cables.
- In land, bimep will provide a research centre in Arminza town (Bilbao, Basque Country, Northern Spain).

3. PROJECT SITE ENVIRONMENTAL CHARACTERIZATION

3.1 Physical Environment

3.1.1 Geology, geomorphology and sedimentology

2/3 of the occupation area of bimep is over sedimentary sediments and a small rock-sand sediments with low organ content and high grain size with a good selection degree (see figure on the left). 1/3 of the occupation area of bimep is over rocky bed. Nearshore, there are two paleochannels filled with sand-gravel sediments.

3.1.2 Tides: semi-diurnal with a range between 4 and 1.5 m

3.1.3 Waves: the mean energy flux of waves is 21.4 kW/m from coming from 45º NW.

3.1.4 Currents: dominated by the wind, the mean speed of currents in water surface is about 10-20 cm/s with a NE-SW direction.

3.1.5 Hydrography: according to the Water Framework Directive requirements (Directive 2000/60/EC), the physico-chemical status of the water bodies in the bimep area in a very good status.

3.1.6 Landscape: all the shoreline near bimep is listed as an area of special interest from the point of view of marine landscape.

3.2 Biotic Environment

3.2.1 Benthos: according to the AZTI Biotic index developed by AZTI (http://emba.azti.es/es/emba/), the benthic communities in the samples taken in bimep (see figure on the left) are representatives of a community dominated by species sensitive to the alteration.

3.2.1.1 Phytoplankton: there are no specific data on the bimep area.

3.2.2 Marine birds: 3 are the main marine bird species in the bimep area: (a) European storm petrel (Hydrobates pelagicus), (b) European shag (Phalacrocorax aristotelis), and (c) yellow-necked gull (Larus michahellis). Consequently, the bimep area has been proposed to be declared as an Important Bird Area (IBA).

3.2.4 Marine mammals: the short-beaked common dolphin (Delphinus delphis) is a common species in the bimep area.

3.2 Socioeconomic Environment

The main economic activity in the bimep area is the fishing activity of 11-14 small professional artisanal vessels which account for more than 14,000 kg of captures of more than 20 different species of small pelagic and bottom fishes.

Also, it’s significant the leisure fishing activity of more than 20 small vessels when meteorological conditions are suitable.

4. ENVIRONMENTAL IMPACTS

- Very significant impact:
- Significant impact:
- Not significant impact:
- No relation

- Consequence of energy extraction and physical presence of devices. Underwater sound, light, vibration and electromagnetic fields generated by the WECs and submarine cable during operation. Wildlife disturbance and electromagnetic field. Visual and landscape impacts. The presence of devices and their operating system has the potential to interfere with vessels and other sea uses, e.g. fisheries, and also to disturbance/destruction of seabed habitats, interference with designated conservation areas and protected species of international, national and local significance.

- Noise disturbance.

- Cultural impact of the proposal.

- Land impacts.

- Socioeconomic impact.

5. IMPACT HYERARCHY

6. PROTECTION, AMENDMENT AND COMPENSATING MEASURES

7. ENVIRONMENTAL MONITORING PLAN (EMP)

The Environmental Monitoring Plan focuses on the monitoring of benthic communities (s) (s) and visual visual impacts with RVS, ichthyofauna (active acoustic surveys), underwater sound and marine mammals (passive acoustic), hydrodynamics (wave and current profiler installation), archaeological resources (visual inspections with RVS), electromagnetic fields, marine birds. (Following the results of the annual census made in the nesting colonies near bimep) and coastal landscape characterization.

8. CONCLUSIONS

- On the first of June 2009, the General Council on Environmental Quality Assessment of the Ministry of Rural, Marine and Natural Environment of the Spanish Government, on the light of the Environmental Impact Assessment (EIA) of the bimep project undertaken by AZTI- Tecnalia, decided to not submit the project to the Whole Environmental Impact Assessment (EIA) process.

- In any case, the Environmental Impact Statement (EIS) of the Ministry, taking into account the great uncertainties about some predicted environmental impacts, underlined the need to implement the proposed Environmental Monitoring Program (EMP) of the EIS.

Acknowledgements

This work has been funded by the Basque Entity of Energy.

Juan Baldi, Andrea del Campo, Javier Franco, Ibon Galparso, Manuel González, Carlos Hernández, Pedro Liria, Iratxe Menchaca, Iñigo Antuña, Cihana Solanet, Aihize Uriarte, Yago Torre Enciso, Dorleta Marina

AZTI-Tecnalia. Marine Research Division. Pasaia (Guipuzcoa), Spain. *Corresponding author: baldi@azti.es

Ente Vasco de la Energía (EVE). Alameda de Urquijo, 36 - 1º Edificio Plaza Bizkaia. 48011 Bilbao (Bizkaia), Spain.